Jaringan Laboratorium Medis

Vol. 6 No. 2 (2024): November 2024
Original Articles

Comparison of Various Methods for Observing Mycobacterium Tuberculosis Microscopically

Widodo
Poltekkes Kemenkes Semarang
Tri Sugiyatmini
BAPELKES dan PAK Provinsi Jawa Tengah
Devi Etivia Purlinda
Poltekkes Kemenkes Semarang

Published 2024-11-01

Keywords

  • Mycobacterium Tuberculosis,
  • Auramin O,
  • Ziehl Neelsen

How to Cite

Comparison of Various Methods for Observing Mycobacterium Tuberculosis Microscopically. (2024). Jaringan Laboratorium Medis, 6(2), 131-136. https://doi.org/10.31983/jlm.v6i2.12137

CrossMark



Dimensions

If it doesn't Appear, click here



PlumX Metrics



Impact Factor

or, Visit on here

Abstract

Technological developments are increasingly rapid in the field of identification and special equipment in the field of microbiology, the development of staining methods and microscopic observation is growing rapidly. The Ziehl Neelsen staining method is still an alternative follow-up to other alternative treatments using the Auramin O staining method with flurocene microscope observation. This research is an analytical observational study and a cross sectional research design to see the differences in readings between Ziehl Neelsen staining, flurocene auramin and gram staining. We used isolates that had been identified as Mycobacterium tuberculosis which we obtained from Balepkes and Pak provinces of Central Java under non-activation conditions, by autoclaving at 121 degrees for 15 minutes. The number of samples was 10 slides with Ziehl Neelsen staining, Flurocene Auramin and Gram staining. The results of the sensitivity and specificity research between Ziehl Neelsen and auramin O were 100%. Meanwhile, the gram staining method and SEM observation cannot be compared because they can only observe bacterial morphology. From the research results it can be concluded that Auramin O can be used as an alternative Ziehl Neelsen painting agent.

Downloads

Download data is not yet available.

References

  1. Ahmed, G.M., Mohammed, A.S.A., Taha, A.A., Almatroudi, A., Allemailem, K.S., Babiker, A.Y., Alsammani, M.A. (2019). Comparison of the microwave-heated ziehl-neelsen stain and conventional ziehl-neelsen method in the detection of acid-fast bacilli in lymph node biopsies. Open Access Maced. J. Med. Sci. 7, 903–907. https://doi.org/10.3889/oamjms.2019.215
  2. Hadano, Y. (2013). Gram-ghost cells. BMJ Case Rep. 2012–2013. https://doi.org/10.1136/bcr-2012-008477
  3. Kochi, A., Styblo, K. (1992). J II’orld Health Organization Tuberculosis Programme.
  4. Laval, T., Chaumont, L., Demangel, C. (2021). Not too fat to fight: The emerging role of macrophage fatty acid metabolism in immunity to Mycobacterium tuberculosis. Immunol. Rev. 301, 84–97. https://doi.org/10.1111/imr.12952
  5. Ludam, R., Jena, B. (2019). Microscopic versus culture methods for diagnosis of Mycobacterium tuberculosis: Our experience. Int. J. Adv. Res. Med. 1, 109–111. https://doi.org/10.22271/27069567.2019.v1.i2b.93
  6. Medeiros, T.F., Scheffer, M.C., Verza, M., Salvato, R.S., Schörner, M.A., Barazzetti, F.H., Rovaris, D.B., Bazzo, M.L. (2021). Genomic characterization of variants on mycolic acid metabolism genes in Mycobacterium tuberculosis isolates from Santa Catarina, Southern Brazil. Infect. Genet. Evol. 96. https://doi.org/10.1016/j.meegid.2021.105107
  7. Rattan, A., Kalia, A., Ahmad, N. (1998). Multidrug-resistant Mycobacterium tuberculosis: Molecular perspectives. Emerg. Infect. Dis. 4, 195–209. https://doi.org/10.3201/eid0402.980207
  8. State, O. (2021). Efficacy of Fluorescence Light Emitting Diode ( LED ) Microscopy for Detection of Mycobacterium Tuberculosis in Sputum of Patients Attending a Tertiary Hospital in Osogbo 3.
  9. Trifiro, S., Bourgault, A.M., Lebel, F., Rene, P. (1990). Ghost mycobacteria on Gram stain. J. Clin. Microbiol. 28, 146–147. https://doi.org/10.1128/jcm.28.1.146-147.1990
  10. Widodo, W., Irianto, A., Pramono, H. (2017). Karakteristik Morfologi Mycobacterium tuberculosis yang Terpapar Obat Anti TB Isoniazid (INH) secara Morfologi. Biosfera 33, 109. https://doi.org/10.20884/1.mib.2016.33.3.316
  11. Widodo, W., Priyatno, D. (2020). Detection Of The Resistance Of Mycobacterium Tuberculosis From Specimens With Tb Patients In Semarang Balkesmas. J. Ris. Kesehat. https://doi.org/10.31983/jrk.v9i1.5583
  12. Zhang, Y., Yew, W.W. (2015). Mechanisms of drug resistance in Mycobacterium tuberculosis: Update 2015. Int. J. Tuberc. Lung Dis. 19, 1276–1289. https://doi.org/10.5588/ijtld.15.0389
  13. Zheng, L.H., Jia, H.Y., Liu, X.J., Sun, H.S., Du, F.J., Pan, L.P., Huang, H.R., Zhang, Z.D. (2016). Modified cytospin slide microscopy method for rapid diagnosis of smear-negative pulmonary tuberculosis. Int. J. Tuberc. Lung Dis. 20, 456–461. https://doi.org/10.5588/ijtld.15.0733
  14. Zheng, X., Av-Gay, Y. (2017). System for efficacy and cytotoxicity screening of inhibitors targeting intracellular mycobacterium tuberculosis. J. Vis. Exp. 2017, 1–8. https://doi.org/10.3791/55273